El modelo de transporte es una clase especial de programación lineal que tiene que ver con transportar un artículo desde sus fuentes (es decir, fábricas) hasta sus destinos (es decir, bodegas). El objetivo es determinar el programa de transporte que minimice el costo total del transporte y que al mismo tiempo satisfaga los límites de la oferta y la demanda. En el modelo se supone que el costo de transporte es proporcional a la cantidad de unidades transportadas en determinada ruta. En general, se puede ampliar el modelo de transporte a otras áreas de operación, entre otras el control de inventarios, programación de empleos y asignación de personal.
Los datos del modelo son:
1. Nivel de oferta en cada fuente y la cantidad de demanda en cada destino.
2. El costo de transporte unitario de la mercancía a cada destino.
Como solo hay una mercancía un destino puede recibir su demanda de una o más fuentes. El objetivo del modelo es el de determinar la cantidad que se enviará de cada fuente a cada destino, tal que se minimice el costo del transporte total.
La suposición básica del modelo es que el costo del transporte en una ruta es directamente proporcional al numero de unidades transportadas. La definición de “unidad de transporte” variará dependiendo de la “mercancía” que se transporte.
Tecnica del Transporte
Los pasos básicos de la técnica de transporte son:
- Paso 1: determínese una solución factible.
- Paso 2: determínese la variable que entra, que se elige entre las variables no básicas. Si todas estas variables satisfacen la condición de optimidad (del método simplex), deténgase; de lo contrario, diríjase al paso 3.
- Paso 3: determínese la variable que sale (mediante el uso de la condición de factibilidad) de entre las variables de la solución básica actual; después obténgase la nueva solución básica. Regrese al paso 2.
Un modelo de transporte se llama balanceado cuando:
S i ai = S j b
Esto significa que la suma de los suministros de todas las plantas debe ser igual a la suma de las demandas de todos los almacenes. Sin embargo en problemas de la vida real, esta igualdad rara vez se satisface. Lo que se hace entonces es balancear el problema.
Si los requerimientos exceden a los suministros, se agrega una planta ficticia, que suministrará la diferencia. El costo de transporte desde la planta ficticia hacia cualquier almacén es cero. Reciprocamente, si los suministros exceden a los requerimientos, se agrega un almacén ficticio que absorberá el exceso. El costo unitario de transporte desde las plantas al almacén ficticio es cero.
Formulacion General
Un problema de transporte queda definido por la siguiente información:
- Un conjunto de m puntos de oferta. Cada punto de oferta i tiene asociado una oferta si .
- Un conjunto de n puntos de demanda. Cada punto de demanda j tiene asociada una demanda dj .
- Cada unidad enviada desde un punto de oferta i a un punto de demanda j tiene un costo unitario de transporte cij
Consideremos:
xij = número de unidades enviadas desde el punto de oferta i al punto de demanda j.
Luego, la formulación general del problema de transporte queda:
Restricciones de Oferta, de Demanda y de Signo Respectivamente:
para mas imformacion sobre el tema de transporte les ofresco un link de un archivo PDF